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Abstract. In this paper, a comparative study between two classification approaches 
was done, namely, between a Support Vector Machine (SVM) neural network - as a 
classical machine learning approach -, and four different deep learning classification 
systems, considered today to be the state-of-the-art systems in computer vision. Two 
embedded companion computers, a Raspberry Pi and a Jetson Nano, placed on a 
HoverGames quadcopter support the classification systems that were developed and 
deployed to identify humans. The ultimate goal of this research consists in developing a 
quadcopter system endowed with the capabilities of following a pre-programmed flight 
route and simultaneously detecting humans as well as of warning the system operator to 
reinforce the quarantine zones. The obtained results demonstrated the superior 
performances provided by the deep learning approach: more than six times faster than the 
classical approach, and with a correct classification performance higher than 90% on a 
direct stream of video data.     
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1.  Introduction  

At the end of 2019, a new disease based on the SARS‐CoV‐2 coronavirus (COVID-19) was 
identified in China. The disease spread all around the world, and currently, the number of people 
infected by the virus is increasing rapidly. 

Up to now, no COVID‐19 vaccine has been successfully developed, and more, no effective 
drugs exist to treat the disease. The most common complications in patients with COVID‐19 
infection are acute respiratory distress syndrome, anemia, acute heart injuries, and different 
secondary infections [1]. Therefore, treatments and patients support are usually provided such as 
antiviral therapy and therapies based on antibiotics, systemic corticosteroids, neuraminidase 
inhibitors, RNA synthesis inhibitors as well as mechanical ventilation for patients with intractable 
hypoxemia [2], to name only a few. Nevertheless, all of these drug treatments are empirical, and 
the efficacy of them still needs to be verified by clinical trials [2]. 

Due to the absence of effective treatments, the best way to deal with the COVID-19 epidemic 
is to control the sources of infection [2] through early diagnoses, epidemiological investigation, 



isolation, social distancing, quarantine, by banning the gathering groups, improving personal 
hygiene, wearing medical masks and by keeping rooms well ventilated. 

In Romania, the government took several preventive measures in order to control the sources 
and the spread of infection. One of the first measures, taken on February 21, 2020, was to impose 
14-day quarantine for all persons that were returning to Romania from the abroad affected regions 
where quarantine was already in place (e.g., northern Italy). On March 29, the Suceava town, along 
with eight adjacent communes, were placed under total quarantine due to the COVID-19 outbreak. 
The Suceava city was the first Romanian city to be placed under the complete lockdown. The 
effective surveillance of quarantine areas and the national lockdown proved to be and continue to 
be challenging tasks for both police and gendarmerie, even if they are receiving technical and 
personnel military support.  

In this paper, we propose a solution to sustain and enforce the quarantine zones. The solution 
is based on an autonomous unmanned aerial vehicle (UAV) able to both detect humans and timely 
send warnings to a control center. Nowadays, the UAVs are used on a large number of applications 
[3] like military, scientific, environmental monitoring, product deliveries, infrastructure 
inspections, entertainment, etc. In the frame of the COVID-19 pandemic, the UAV technology 
could make an important contribution by exploiting its huge potential in applications that are 
dealing with delivering medicine and collecting samples [4], spraying crowded urban areas with 
disinfectant, temperature checking, information delivery or surveillance and monitoring. In all 
these, the key advantage of using the drones resides in their ability to limit face-to-face contact, 
which, in turn, will prevent the contamination with the COVID-19 virus. 

2.  The main concept of the system 
The main goal of the quarantine is to separate the people that may have been exposed to a 

disease in order to monitor their health state evolution over the incubation period of the pathogen. 
The idea of this research is to start using technology to enforce the quarantine and to protect the 
public by preventing its exposure to people who were identified as carriers, either symptomatic or 
asymptomatic, of a contagious disease like COVID-19. 

For this purpose, an autonomous drone (UAV system) will carry out pre-programmed flight 
missions by following a planned path around the quarantine zone, and, at the end of the mission, 
it will return to the landing point. The drone is designed to be equipped with two video systems. 
One of these is connected to an embedded system, and its role is to detect and to localize humans 
in an automatic manner. When a human is localized, a warning is sent, through a radio module, to 
the base station, see Figure 1. All the image processing steps are done on the onboard computer, 
and no images are sent to the ground station or stored on the onboard computer. Based on this 
approach, there are no issues regarding the General Data Protection Regulation (GDBR) or any 
infringement of these rules, either intentionally or by negligence. 

The second video system is dedicated both for the remote control of the UAV as well for the 
validating of the automatic human recognition process. The first function of the UAV system is 
managed through an RC (remote control) unit, and it is activated whenever the human operator 
from the ground base station considers as being necessary. 

3.  The unmanned aircraft system  

3.1. The hardware components 
The unmanned aircraft system (UAS) used in this research, see Figure 1, is composed of a 

HoverGames UAV, a ground base controller – composed, in its turn, of several different elements 
–, and the communication system, mainly sustained by MAVLINK protocol. 



The UAV system was built based on the HoverGames drone kit, a professional development 
kit produced by NXP Semiconductors N.V. company. This kit contains all the required 
components needed to build a quadcopter (see Figure 2): the flight management unit 
(RDDRONE-FMUK66), four BLDC brushless motors, ESCs motor controllers, propellers, an RC 
unit, a carbon fiber frame, a GPS module, the power management module, the power distribution 
board, etc.  

The human detection function was implemented by using two companion computers: a 
Raspberry Pi system, that supported the classical classification approach, and a Jetson Nano 
system, that supported the deep learning classification algorithms – see Figure 1, and Figure 2, 
respectively. The communication between the flight management unit (FMU) and each of the 
above-mentioned companion systems was done by using the I2C protocol, see Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A schematic block diagram of the UAS 

The communication between the HoverGames drone and the ground control station was 
designed and implemented using three different communication links. A telemetry radio 
transceiver, working on 433 MHz, assures the main link with the ground station and it allows to 
access the following functions: to configure the flight path,  to supervise and change settings and 
parameters of the FMU without having a USB connection; but, most of all, it allows checking the 
status of the HoverGames quadcopter while it is in the air. 

The second communication link, on 2.4 GHz, is a radio controller (RC) type link through which 
a ground control operator can take any time control of the drone, switching from the autonomous 
mode to the manual mode. The FlySky FS-i6S RC transmitter used for this is a highly configurable 
radio controller, supporting up to 10 control channels at the same time. Both links presented above 
use frequency hopping techniques to avoid collisions: the AFHDS 2A (Automatic Frequency 
Hopping Digital System) for the RC transmitter and the FHSS (Frequency Hopping Spread 
Spectrum) for the telemetry radio unit. 
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The third control link consists of the First-Person View (FPV) system that is a method through 
which, based on information provided by the onboard camera, a UAV can be controlled as from 
the pilot viewpoint, Figure 2. In this research, the FPV system was used: (1) to pilot the 
HoverGames drone in manual mode, as well as (2) to endorse and check the automatic human 
recognition system. 

 

Figure 2. The UAV system build on a HoverGames drone 

3.2. The software components 
The flight management unit supports the open-source PX4 flight stack. Additionally, the Linux 

Foundation supports a large number of open-source collaborative projects. One of these projects 
is Dronecode, the umbrella for both the PX4 autopilot – which is also the "brain" of the 
HoverGame drone –, and the MAVLINK inter-vehicle communication protocol, which was 
mainly designed for communications between ground-stations, autopilots, and companion 
computers.  

The PX4 autopilot consists of two main layers. The first layer is the flight stack. This one is 
composed of several estimation, guidance, and flight control modules, as well as of all the 
components required to sustain these core blocks – e.g., sensor interface, radio command input, or 
the motor and servo control functions. The second layer, which is also the middleware, is a general 
robotics layer that can support any type of code integration envisaged to sustain internal/external 
communications and any additional hardware integration. At this software level, we developed 
and integrated a software component designed to take the information from the human detection 
system and to send it to the ground station. 

For each of the companion computers, we developed several software components dedicated 
to acquiring images, searching for humans in these images, and sending the obtained results to the 
FMU. On the FMU, the middleware developed component receives the human detection module 
results and send them further to the base station; to implement this, we made use of the MAVLINK 
communication protocol. 
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4. Autonomous flight 
The HoverGames drone may operate in an autonomous way or under the remote control of an 

operator. The PX4 autopilot, the onboard FMU, and the QGroundControl control station are the 
main components that provide the HoverGames drone with the autonomous flying capacity. More 
precisely, the host PX4 autopilot allows autonomous drones to take off, carry out predetermined 
missions, and land entirely autonomously without any human intervention. 

The QGroundControl control station can manage multiple drones simultaneously, and it has 
two main components functionally involved in an autonomous flight: a mission planner and a 
mission tracker. The mission path planning for an autonomous flight is done mainly through 
waypoints insertion, see Figure 3. 

 

 

 

 

 

 

 

 

 

 

Figure 3. A screenshot showing a mission plan 

The screenshot in Figure 3 shows a mission plan example that follows a polyline in order to 
survey the perimeters of three structures, namely, three blocks of flats. The mission plan starts 
with a takeoff that corresponds to the red arrow position, also referred to as the Planned Home 
point; then, it continues with flying through seven waypoints, provided in a prescribed order, and 
finally, it ends with the landing at the Return To Launch point. In the right, the Mission Command 
List is provided. By selecting a specific waypoint, several of the flight parameters for this 
particular point become available for editing; these parameters are the altitude, the flight speed 
(e.g., one can set a particular speed for this waypoint, other than the default mission speed), the 
option for a specific camera action that should be taken when the drone will fly over the set 
waypoint (e.g., controlling the gimbal, selecting the photo or video mode), etc. 

Once the mission has been planned and uploaded to the HoverGames drone, one can switch 
from the mission planning mode to the mission tracking mode in order to achieve the mission. The 
missions tracker, i.e. the Fly View, is used to both command and monitor the drone. The mission 
control (e.g., the start, continue, pause, and resume commands) and the drone guidance (e.g., the 
arm/disarm/emergency stop, takeoff/land, change altitude commands) are carried out in real-time 
by employing the telemetry link (433 MHz). 
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5. The human detection systems 
All the human bodies have the same basic structure – four limbs (two arms and two legs), a 

head, a neck, and a torso –, regardless of the gender, race, age or ethnicity involved. Beyond all 
these similarities registered at the structural level, there is also a large variability in between 
humans given by the physical appearance, which is in direct relation with the body shape, the age, 
the health, the skin color, the skeletal shape, etc. of each individual. From the similarities and 
dissimilarities encountered in between humans, the first are the ones exploited within our 
classification systems. The classifiers primarily extract the features able to best describe and 
differentiate the human bodies from other statical or dynamical objects and things identified within 
an image. So, based on these features, a machine learning model can be trained to learn the human 
body variabilities in order to detect humans in video streams. 

In the field of computer vision, a large number of methods are addressing today the challenging 
task of human detection in video streams. One of the simplest methods applied is the differential 
motion analysis between frames [5]. Other methods rely on identifying humans based on their 
detected body parts [6]. The Haar cascade classifiers, based on Viola-Jones detectors, were the 
first object detection framework able to provide real-time detection [7]. The Viola-Jones detectors 
supported for many years the advances in the object detection research field. Nevertheless, in 
recent times, much more powerful methods have been developed, like the histogram of oriented 
gradients [8], [9], the deformable parts models [10], or the deep learning approach [11], [12].  

The human detection task achievable on a UAV system is a very challenging one due to: (1) 
the computationally expensive algorithms and the power constraints of the quadcopter, (2) the 
variable imaging conditions, (3) the image distortions introduced by both the actual movement of 
the quadcopter and its motor vibrations, (4) the variable size of the targets to be identified, etc. 
This study proposes an evaluation of several algorithms for human detection on video streams 
captured from UAVs. Two main constraints of the analyzed systems are addressed, the 
computation time and the detection performance, and two different classification approaches are 
evaluated in a comparative manner. For the first approach – also referred to as the classical one –
, a Support Vector Machine (SVM) classification system and the Histogram of Oriented Gradients 
(HOG) features descriptors were taken into account for analysis. Our choice for this method is 
justified by both the flexibility of the method that is extensively used in many research fields and, 
more than that, by its superior classification results [8], [9], [13], [14]. The deep learning 
classification systems, nowadays considered the state-of-the-art systems in computer vision, 
represent the second approach explored in our study. 

5.1. Classification algorithms 
In this research, the main goal resides in classifying the input frames in only two classes: (a) 

images without human(s) and (b) frames in which one, two or more humans are detected. 

In the first used methodology, the features of the human(s) in images were extracted using 
the Histogram of Oriented Gradients (HOG) and classified by a support vector machine (SVM) 
network.  

The HOG [15] is particularly suited for human detection in images, and it is considered one of 
the best human descriptors. In this feature extraction method, the input image is divided into small 
connected regions, of n x n pixels, called “cells” and a sliding detector window of fixed size (l x h 
cells) is defined by the algorithm in order to scan the image. On each cell, a histogram of gradient 
orientations is computed. For best results, in order to reduce the influence of the effects of image 
lightning changes, these gradients are computed over the normalized color and Gamma image. 
The gradient value computed for each pixel of each cell is then used in the cell orientation 



histogram for voting. Further, in order to obtain the HOG descriptors, to provide better invariance 
against illumination, shadows, and contrast of the edges, and to decrease the required computation, 
another processing step, called Local Normalization, is executed, in which normalization is 
applied to k x k “blocks” of histograms instead on single histograms [15]. In order to detect 
humans, the sliding detection window scans the entire image; more, it is applied to the input image 
and to the different scaled variants of it. In the end, the HOG descriptors extracted for all these 
windows are provided further to the classification system.  

The SVM was firstly introduced in 1995 [16], and nowadays, it is considered to be among the 
best performers in the class of classical machine learning. The main idea of this type of classifier 
is to endow a neural network with a high generalization capacity by mapping inputs non-linearly 
to high-dimensional feature spaces. In this new feature space, the linear decision surfaces are 
constructed and, then, used in the final decision process. 

In the second applied methodology, in order to classify humans from video streams, we 
implemented a transfer learning approach with AlexNet, SqueezeNet, ResNet-18, and ResNet-34 
deep neural network, respectively. 

The AlexNet is the name of a convolutional neural network (CNN) composed of eight layers. 
The first five layers are convolutional layers, and the last three layers are classically fully 
connected layers. An Overlapping Max Pooling layer follows after each of the first two 
convolutional layers as well as after the fifth convolutional layer. Only the third, the fourth, and 
the fifth convolutional layers are connected directly [17]. Using the convolution, a convolutional 
layer combines the input data from the previous layer with a convolution kernel (i.e., a filter) in 
order to extract the features that will, then, feed the next layer. Each convolutional layer uses many 
kernels of the same size.  For example, the first convolutional layer contains 96 kernels (with the 
size of 11x11x3); the second convolutional layer of the AlexNet network contains 256 kernels, 
but for this layer, the convolution window is only 5x5. The following three convolutional layers 
are based on kernels with the 3x3 size. In the AlexNet network, the ReLU nonlinearity is used for 
neurons in all convolutional and in all fully connected layers. The Overlapping Max Pooling layers 
are usually used both as a downsample discretization process and to extract the most important 
features. 

When the SqueezeNet was created, its primary goal was to provide a new neural network 
smaller than AlexNet and with the same level of accuracy when applied to the ImageNet Large 
Scale Visual Recognition Challenge database [18]. The SqueezeNet deep neural network has an 
entirely different architecture than AlexNet. The SqueezeNet has ten layers, out of which only the 
first one and the last one are convolutional layers; the remaining eight intermediate layers are 
special layers, called Fire Modules. A Fire module is comprised of two components: (1) a squeeze 
convolution layer, which contains only 1x1 filters, and whose output feeds (2) an expand layer 
that has a mix of 1x1 and 3x3 convolution filters. Two of the main concepts of the SqueezeNet 
are: (1) to replace as many as 3x3 filters with 1x1 filters, and (2) to decrease the number of input 
channels using the squeezing layers. By applying all these concepts, the SqueezeNet succeeded in 
obtaining a reduction, by a factor of fifty, in the model size compared to AlexNet. 

The residual neural network (ResNet) uses a different concept; namely, it implements a skip 
connection type that allows for jumping over two or even three layers, modeling in this mode the 
pyramidal cells from the cerebral cortex. All layers of this network are convolutional layers, 
consisting mostly of 3x3 filters, with ReLU nonlinearities. The ResNet architectures have a large 
number of implementations, starting from 18-layers deep up to 152-layers deep. The key concept 
of this new type of deep network relies on the observation that increasing the depth of a neural 
network should increase the accuracy of the network, as long as we take care of the over-fitting 



process. In this research, we took advantage of the two smallest implementations of the ResNet – 
ResNet-18 and ResNet-34 –, and this is because they provide a good trade-off between accuracy 
and efficiency. 

The PyTorch framework used in this research includes pre-trained models for all the deep 
neural networks presented above. These models were trained on the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) database. ILSVRC has more than 14 million images in the 
dataset, grouped in more than 21 thousand classes. All the deep neural network models from 
PyTorch were trained with 1000 classes. The trained neural networks embed layers able to find 
outlines, lines, curves, and other image features. All these image features can be re-usable for our 
classification task, namely, the human detection task, by replacing and retraining the last neural 
layer. The replaced layer has 4096 inputs for AlexNet and 512 inputs for SqueezeNet, ResNet-18, 
and ResNet-34, and two outputs, defined by our particular problem. 

5.2. Sample database 
To train the last layer of the deep neural networks, a new training database was created, 

consisting of 600 images, out of which half are corresponding to the first class (i.e., the class of 
images that include humans), and the other half of them are corresponding to the second class (i.e., 
the class of images without humans). These images were extracted from the movies recorded 
during quadcopter flight, and to do this, a specific interface was designed and developed by us, in 
Python, Figure 4(a). The selected frames include one or more humans (e.g., men, women, and 
children), differently dressed, of different ages, being in different positions, and placed in an urban 
environment as varied as possible.  

 

  

 

 

 

 

 

Figure 4. The user interfaces for: (a) database creation, and  
(b) training of the deep neural networks 

The training data set was employed only for the deep neural networks, Figure 4(b). The 
OpenCV embeds in its libraries a pre-trained HOG and a Linear SVM model, both used by us to 
perform pedestrian detection in video streams. 

A second data set, i.e., the test set, was used to analyze the performances of the trained 
classification models. For this, six short movies (20 fps) were used, and from these, only three 
included humans. The above-discussed program was developed to have the ability to both extract 
the frames and process them in an online manner. The images from the test set were different from 
those in the training set, with quite balanced classes, i.e., with 654 images for no humans class and 
656 images for humans class. 



The HOG extractor and the Linear SVM model worked with images respecting the standard 
VGA resolution of 640 columns by 480 lines; the images were acquired by the Raspberry Pi V2 
camera module. For all deep neural networks, the input images were resized at 244 x 244  on all 
the R, G, B channels and were normalized in the [0, 1] range, with the mean set to [0.485, 0.456, 
0.406] and the standard deviation to [0.229, 0.224, 0.225]. 

6. Results 
 For each of the classification systems, five classification performance metrics, the accuracy, 

the true positive rate (TPR), true negative rate (TNR), positive predictive value (PPV), and 
negative predictive value (NPV), were computed.  

Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

    (1) 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

    (2) 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

    (3) 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

    (4) 

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

    (5) 

where, TP = True Positive, FP = False Positive, FN = False Negative, and TN = True Negative. 
The classification accuracy is simply the rate of correct classifications, while the sensitivity index 
(also called the true positive rate or recall) measures, in our particular case, the probability of 
detection, the percentage of humans that are correctly identified as actually existing in the analyzed 
image. Mainly because we want to detect, with high precision, humans in a given quarantine zone, 
it effectively becomes mandatory for our system to achieve high values for the two above-
mentioned performance indices, i.e., accuracy and sensitivity. The true negative rate, also called 
specificity, measures the percentage of frames that are correctly identified as not including any 
human. However, an excellent classification system requires to have the positive predicted value 
and the negative predictive value as higher as possible. The positive predicted value, also known 
as precision, is the probability that images classified by the system as alert-triggering images truly 
contain at least one human. The negative predictive value is the probability that images classified 
by the system as non-alert-triggering images truly not containing any human. 

6.1. HOG+SVM results 
 For this first approach, that includes HOG descriptors and SVM classifier, a C program for 

human detection was developed. The program used the HOG feature extractor and the Linear SVM 
model classifier, provided by OpenCV, in order to perform human detection in video streams. The 
program runs on a Raspberry Pi 3 Model B+ companion computer that has a CPU unit with four 
cores, all clocked at 1.4 GHz. 

The goal of the classification system is to detect human(s) and to send, in such a case, a warning 
to the ground station. The warning should be sent whenever the system detects one, two, or more 
human subjects. The obtained classification performances, extracted from the cross-validation 
matrix computed on the training set, are presented in Table 1. In computing the results, several 
rules were followed. Thus, each time a human was detected not only as one presence but as 
multiple ones, like in the case presented in Figure 5(a), only a single TP sample was counted. 
More, even if in the image there were several humans and the system detected only one of them, 



or only part of them, like in Figure 5(b) and (c) cases, also, only a single TP sample was counted. 
Figure 5(d) presents another particular case. In this one, there was indeed a human in the image, 
but the classification system “detected” not the human but an object from the environment; in such 
a situation, the classifier output was treated in the cross-validation matrix as an error (i.e., an FN 
sample). 

 

 

 

 

 

Figure 5. Several situations of human(s) detection 

Table 1. The confusion matrix for HOG and SVM classification system 

HOG & SVM 
Performance 

Actual class 

Human(s) No human(s) 

Predicted 
class 

Human(s) 601 239 

No human(s) 53 417 
 
For the HOG and SVM approach, the correct detection rate was only 77.71%, and the 

sensitivity, 91.89%. Nevertheless, the main drawback of this method was by far its low time 
efficiency. Thus, the feature extraction and the classification processes took a substantial amount 
of time, somewhere between 2.4 and 2.9 seconds. 

Table 2. The statistical performance measures for the 
HOG and SVM classification system 
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HOG and SVM 77.1% 91.89% 63.57% 71.55% 88.72% 

Starting from the confusion matrix, presented in Table 1, different statistical performance 
measures for the HOG and SVM classification system were computed and provided in Table 2. 
A perfect human recognition system is described as 100% sensitive (i.e., all video frames 
containing humans are correctly recognized) and 100% specific (i.e., the elements of the urban 
landscape are not recognized as people; such an opposite situation is presented in Figure 5(d)). 
The results of Table 2 reveal that the HOG-SVM classification system has an excellent sensitivity 
but a quit low specificity. More precisely, the HoverGames drone system will miss roughly 8 
frames out of 100 frames containing humans, but at the same time, it will also generate almost 37 
false alarms out of 100 situations that do not require triggering the alert. 

(a) (b) (c) (d) 



To improve the execution time, a multi-thread approach was further employed, namely, with 
three different recognition threads running on three distinct cores of the Raspberry Pi system, 
Figure 6. 

 
Figure 6. The multi-thread approach used to improve the classification execution time 

In Figure 6, THD represents the entire time interval needed to detect human(s) – to acquire an 
image, extract the features, and run the class0ification system – in the worst case. The main idea, 
implemented in our application, was to start on three different cores of the Raspberry Pi system, 
and by using a timer, three different detection processes, delayed each with a time interval of T/3, 
see Figure 6. To have a safety margin, T was set at a value with 20% higher than the worst time 
required to detect humans, TDH. Based on this approach, at each T/3 seconds, the system could 
provide the output for the human detection process. This means that, for a real situation, in which 
a human detection previously took between 2.4 and 2.9 seconds, now, after using the threads as 
above, improved speed of around one frame/second could be achieved for the entire processing 
flow - image acquisition, feature extraction, and classification. 

 

 

 

 

 

 

 

 

 

Figure 7. The user interface used to test the deep neural network – an example of the 
performance obtained by using the AlexNet network  

6.2. Deep learning results 
In the development of the deep neural networks, we used the Python language, sustained by 

the PyTorch backend. Reported in the literature there are other frames too, like the classical 



TensorFlow, in which amazing applications were developed [19]; however, our choice for using 
PyTorch was motivated mainly by the better development and the debugging experience provided 
to the developer.  The human detection application was implemented in the Jupyter Notebook 
computational environment and executed on the Jetson Nano companion computer. The Jetson 
Nano has a quad-core 64-bit ARM CPU and includes a 128-core NVIDIA Maxwell GPU. It can 
deliver 472 GFLOPS of computational power and can run a full training deep neural networks; 
also, it can re-train the deep networks based on the transfer learning paradigm. 

In Figure 7 the testing user interface is presented. In addition to presenting the classification 
information, i.e. accuracy and confusion matrix, the user interface provides: (a) in real-time and 
in direct accordance with the presented image (not shown in Figure 7) – the frame classification 
results, and (b) ultimately, when the testing stage was finished – the average classification time as 
well as the standard deviation. 

The results obtained on the test set, by running the four deep neural network models presented-
above, are reported in Table 3. These performances were achieved for the best classifier 
architectures obtained after at least twenty different training sessions. The last neural layer was 
trained with the Adam algorithm [20]. The Adam (adaptive moment estimation) is a gradient-
based optimization method used in the deep learning models to update network weights, thus 
replacing the classical stochastic gradient descent algorithm. In Adam algorithm, each network 
weight has its learning rate, which is adapted accordingly with the first and second moments of 
the gradients. Adam outperforms other similar algorithms [20], and it is currently recommended 
as the default learning algorithm for the deep learning structures [21], [22]. 

Table 3. The obtained deep neural networks performances 
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AlexNet 72.9% 74% 71.79% 72.34% 73.47% 0.274 0.07055 

SqueezeNet 62.34% 93.42% 31.29% 57.58% 82.66% 0.263 0.02976 

ResNet-18 90.76% 98.77% 82.77% 85.11% 98.54% 0.449 0.01425 
ResNet-34 93.36% 100% 86.73% 88.25% 100% 0.732 0.03284 

By comparing the data from Table 3, one can observe that the SqueezeNet CNN is the fastest 
neuronal structure from the ones analyzed, with a processing speed of 3.8 frames/second. 
However, even if the SqueezeNet is almost three-times faster than ResNet-34, its classification 
performances for the human detection problem are far from the best ones; also, the specificity is 
very low. On the other hand, the ResNet-18 model seems to be the best choice for our problem. 
With a high classification accuracy (90.76%), with a very high sensitivity (98.77%), and with a 
detection time greater than 2 frames/second, ResNet-18 is the natural choice for the human 
detection system. In the autonomous mode, the HoverGames default mission speed is 5 m/s. If the 
ground operator sets the speed to be slower, e.g., 1-2 m/s, the ResNet-34 can also be used. The 
ResNet-34 network models in the best way the human detection problem, and it obtains a 
classification accuracy of 93.36%, and a sensitivity and NVP of 100%. For this case, the 
classification time (frame acquisition time + time required to preprocess the frame + frame 
classification interval) is around 732 ms or, equivalently, 1.36 frames/second. Also, the ResNet-
18 and ResNet-34  have the highest positive predictive values (i.e., above 85%), and negative 



predictive values from all the classification systems analyzed in this paper, with the negative 
predictive values being 100% or almost 100%. In particular, with a prevalence of about 50% (this 
metrics shows how often human-containing image category occurs in all analyzed images), the 
predictive values reported for the ResNet-18 system point out that, out of 2000 analyzed images, 
about 851 true positives and 985 true negatives are likely, with 149 false positives and 15 false 
negatives. 

In a study analyzing a quadcopter system used for searching and rescuing operations, the same 
approach employed by us in this research paper, i.e., HOG feature extraction and SVM classifier, 
led to performances of 78% for sensitivity and 83% for specificity [23]. The performances were 
similar to the ones reported by us in the classical machine learning approach. However, there is a 
significant difference between these two studies, materialized in both the way the research was 
conducted and the way the results were obtained. Thus, in our research, we used an onboard 
computer (i.e., a Raspberry Pi system). In [23], on the other side, the authors performed an offline 
analysis done on a personal computer. In another study [24], a real-time human detection system 
based on a UAV is presented. In this research, the video frames are acquired from a DJI Matrice 
100 UAV and sent to a ground station where all the recognition process is done. The reported 
performances for this system indicate a precision value of 88% and a recall (sensitivity) value of 
92%. A comparison between our system performances and the results obtained in [24] reveals that 
the sensitivity of the HoverGames human detection system proposed in this study outperforms the 
corresponding performance measure reported in [24], for both of the ResNet neural networks, 
Table 3. The precision computed for the ResNet-18 is a little bit lower (85.11% versus 88%), but 
the ResNet-34 network has a comparable precision – 88.25% versus 88%, see Table 3. 
Nevertheless, unlike the system presented in [24], in this research paper, all the processing steps 
were done onboard of the HoverGames UAV system. 

7. Conclusions 
In this paper, we proposed a highly accurate real-time quadcopter human detection system. The 

HoverGames quadcopter is able to fly autonomously on a predetermined path and, also, to warn 
in real-time the ground station if a human was detected in its path. In this mode, the autonomous 
UAV system becomes a very useful and efficient tool in enforcing the COVID-19 quarantine 
zones. 

To make a comparison and to decide, in a knowledgeable way, which is the best approach for 
the human detection task in video streams, we selected for analysis a Support Vector Machine 
(SVM) classification system and four deep neural network models, i.e., the AlexNet, the 
SqueezeNet, the ResNet-18, and the ResNet-34, respectively. 

According to the experimental results, the HOG and SVM model produced a 77.71% 
classification accuracy rate and a 91.89% sensitivity, while the ResNet-18 produced a 90.76% 
classification accuracy rate and a 98.77% sensitivity. These results reveal that ResNet-18 is the 
most accurate and robust classifier, and, in consequence, it is very well suited to be applicable in 
real-world applications. 

The present research is a first, but a major step towards achieving a robust system for 
monitoring quarantined areas. In future research, an important objective will be the analysis 
performed on an extensive database of images and video streams, as well as the application - on 
the results obtained - of well-known statistical tests in order to provide a calibrated and robust 
indication on the ability of the selected model to correctly detect humans. 
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